数据中心能效管理监管
生成的冷空气不一定是惟一冷却来源。干嘛不同时借助大自然呢?我们使用室外空气作为自由冷却,每年可节省150万美元的能源成本。为此,我们在大楼一侧安装了调节风门,可自动调节从室外进入的空气。如果室外气温低于设定的温度点,调节风门会开启,室外空气经过滤后进入冷却系统。反过来,如果室外空气高于设定的温度点,调节风门会关闭,冷却装置则开始工作。
数据中心如今不是使用依赖电池的系统,而是使用运转时可存储能量的动态UPS.能量来自我们的切换基础设施,可以让每个UPS设备的电动马达转动起来。UPS存储的能量可供电15秒到20秒,这时间足以执行任何切换操作。较旧的电池UPS能效有85%,如今最出色的UPS其能效平均达到了约94%,而有些UPS的能效高达97.7%,损耗的能源不到电池UPS的一半。
电力要求和能源价格与夏季温度攀升密切相关。在温度和电力出现高峰的期间,我们以天然气为动力的热电联供(cogeneration)系统就会投入使用,为一百万瓦的数据中心提供经济的电力。通过这种方法得到了两个好处。
首先,通过在靠近用电区域的地方发电(分布式发电),降低了电力成本,并且减少了输电过程中损耗的电量。第二个优点直接来自热电联供。热电联供指通过热力学原理高效利用燃料。它利用了发电过程中形成的大量废热。在其中一个数据中心,利用了天然气作为动力的发电机生成的废热,作为对冷却系统所用水进行冷却的吸附式冷却装置的动力源。我们的热电联供系统总能效达到了75%至85%,每年可节省30万美元。
可以采取另一个步骤来帮助提高数据中心能效:准确、定期地监控环境。大多数数据中心测量周边的负荷,因而无法准则测量结果。为了能够真正提高能效,有必要提高测量的准确性,即在机架层面进行测量(每个机架耗用的瓦特),而不是数据中心的某个地方开始温度升高时,单单加快风扇的转速。我们不断测试及调整环境,放在中间层的多个温度传感器测得温度高低平均相差10到12度。